\qquad
CS 383
Exam 1 Solutions

There are 6 numbered questions. The 6 parts of Question 1 are worth 4 points each. Questions 2 through 6 are worth 15 points each. You get one point for free.

1. Which languages are regular? You don't need to prove your answers. Write an " R " in the blank next to the description of each language you think is regular. Write " N " for any language you think is not regular. In each case the alphabet is $\Sigma=\{0,1\}$
a. __R__Strings that end in exactly five 1s. So 01011111 is in this language but 010111111 is not.
b. __R_Strings with any number of 0 s followed by an even number of 1 s .
c. __R_ $\left\{0^{m} 1^{n} \mid\right.$ if m is even then n is also even; if m is odd then n is also odd $\}$
d. __R_Strings where the digits sum to a number divisible by 5 (i.e., the digits sum to $0,5,10,15$, etc.)
e. __N_Strings where there are at least as many Os as 1s.
f. \quad _ $\quad _0^{*} \mathcal{L}$ where $\mathcal{L}=\left\{0^{n} \mid \mathrm{n}\right.$ is prime $\}$. Note that strings in this language have any number of 0 s followed by a prime number of 0 s .
2. Give a DFA for the strings of 0 s and 1 s that contain the substring 010. For example, 110101 should be accepted by this DFA but 1001100 should not be accepted.

3. Here is an ε-NFA, with start state A.
a) Convert this NFA to a DFA
b) Describe in English the strings it accepts.

Solution:

This accepts all strings ending in 0.
4. Suppose we know that for some language \mathcal{L} the language $00 \mathcal{L}=\{00 \alpha \mid \alpha \in \mathscr{L}\}$ is regular. Must \mathcal{L} be regular? Either give an example where \mathcal{L} is not regular and $00 \mathcal{L}$ is regular, or else show that \mathcal{L} must be regular if $00 \mathcal{L}$ is.

The language \mathcal{L} must be regular. Suppose $P=(\Sigma, Q, \delta, s, F)$ is a DFA accepting $00 \mathcal{L}$. Let $q=\delta(s, 0)$ and let $q 1=\delta(q, 0)$. State $q 1$ is where you get to in P on input 00 . Let $P^{\prime}=(\Sigma, Q, \delta, q 1, F) . P^{\prime}$ is the same as P only with start state $q 1$. Now suppose string α is in \mathcal{L}. Then 00α is in 00 L and takes P from state s to q to $q 1$ and then eventually to a final state. So α takes P^{\prime} from $q 1$ to a final state, and P^{\prime} accepts α. Similarly, if α takes P^{\prime} from $q 1$ to a final state then 00α takes P from s to a final state, so 00α is in $00 \mathcal{L}$ and α must be in \mathcal{L}. Altogether, the DFA P^{\prime} accepts α if and only if α is in \mathcal{L}, so \mathcal{L} is regular.
5. Consider the following DFA. We had an algorithm for converting a DFA to a regular expression. This involved making a table of regular expressions $r_{i j}^{k}$.

Here is the first column of a table of the $r_{i j}^{k}$ expressions; find the 4 entries of the second column.

	$\mathrm{k}=0$	$\mathrm{k}=1$
r_{11}^{k}	$\varepsilon+1$	$\mathbf{1}^{*}$
r_{12}^{k}	0	$\mathbf{1 * 0}^{*}$
r_{21}^{k}	1	$\mathbf{1 1 *}^{*}$
r_{22}^{k}	$\varepsilon+0$	$\mathbf{\varepsilon + 1 * 0}^{\mathbf{c + 1}}$

$$
r_{i j}^{1}=r_{i j}^{0}+r_{i 1}^{0}\left(r_{11}^{0}\right)^{*} r_{1 j}^{0}
$$

6. Use the pumping lemma to show carefully that the language $\left\{0^{m} 1^{n} 0^{n} \mid m>=2, n>=0\right\}$ is not regular.

Suppose this language is regular; let p be its pumping constant. Let $w=0^{2} 1^{p} 0^{p}$. This is longer than p, so let $w=x y z$ be any decomposition of w where y is not empty and $|x y|<p$. All of y must come from the initial $0^{2} 1^{p}$ elements of w. If y contains any initial $0 s$ then $\mathrm{xy}^{0} \mathrm{z}$ has fewer than $\mathbf{2}$ initial 0 s . If y contains any 1 s then $\mathrm{xy}^{0} \mathrm{z}$ has fewer 1 s than trailing 0 s. Either way, $\mathrm{xy}^{0} \mathbf{z}$ is not an element of our language so our string w is not pumpable. This contradicts the Pumping Lemma, so our language can't be regular.

